

CHEMISTRY HIGHER LEVEL PAPER 1

Thursday 16 May 2013 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
٢		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 0 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 N o (259)
N		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
e		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es (254)
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
ole				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
dic Tal				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
Perio				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
	F		I	25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 N p (237)
	number	nent omic mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic	Eler Relative at		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	<u>r</u>		ł	22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	+i=	• • •
7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
1	1 H 1.01	3 Li 6.94	11 N a 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

- 1. How many atoms are present in $0.10 \text{ mol of } PtCl_2(NH_3)_2$?
 - A. 6.0×10^{22}
 - B. 3.0×10^{23}
 - C. 6.6×10^{23}
 - D. 6.6×10^{24}
- 2. What mass of carbon dioxide, $CO_2(g)$, in g, is produced when 5.0 g of calcium carbonate, $CaCO_3(s)$, reacts completely with hydrochloric acid, HCl(aq)?

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

- A. 0.050
- B. 2.2
- C. 4.4
- D. 5.0
- 3. The volume occupied by one mole of an ideal gas at 273 K and $1.01 \times 10^5 \text{ Pa}$ is $22.4 \text{ dm}^3 \text{ mol}^{-1}$. What volume of hydrogen, in dm³, is produced when excess magnesium ribbon reacts with 100 cm^3 of 2.00 mol dm^{-3} hydrochloric acid?

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

- A. 0.100
- B. 2.24
- C. 4.48
- D. 22.4

- 4. Which is the correct order of the stages of operation in the mass spectrometer?
 - A. vaporization, ionization, acceleration, deflection, detection
 - B. vaporization, ionization, detection, deflection, acceleration
 - C. ionization, vaporization, acceleration, deflection, detection
 - D. ionization, deflection, acceleration, detection, vaporization
- 5. Which species has the electron configuration of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$?
 - A. Ni
 - B. Ni²⁺
 - C. Fe
 - D. Cu²⁺

6. Element X is in group 5 and period 4 of the periodic table. Which statement is correct?

- A. X has 5 occupied energy levels.
- B. X can form ions with 3– charge.
- C. X is a transition element.
- D. X has 4 valence electrons.

- I. Melting point increases
- II. First ionization energy decreases
- III. Ionic radius increases
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **8.** Which statements about $[Ag(NH_3)_2]^+$ are correct?
 - I. NH_3 forms a dative covalent (co-ordinate) bond with Ag^+ .
 - II. The formation of the bond between NH_3 and Ag^+ is an example of a Lewis acid–base reaction.
 - III. Ag^+ is the ligand in this complex ion.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 9. Which is the best description of a metallic bond?
 - A. Electrostatic attraction between oppositely charged ions
 - B. Electrostatic attraction between a pair of electrons and positively charged nuclei
 - C. Electrostatic attraction between a lattice of positive ions and delocalized electrons
 - D. Electrostatic attraction for a bonding pair of electrons which have been supplied by one of the atoms

	Structure	Bonding
A.	Silicon dioxide forms a giant covalent network.	Each oxygen atom is covalently bonded to two silicon atoms.
B.	Silicon dioxide molecules are V-shaped or bent.	Each silicon atom is covalently bonded to two oxygen atoms.
C.	Silicon dioxide molecules are linear.	A double covalent bond exists between silicon and oxygen atoms.
D.	Silicon dioxide forms a giant covalent network.	Each oxygen atom is covalently bonded to four silicon atoms.

10. Which statements about the structure and bonding of silicon dioxide are correct?

- 11. Which series shows increasing boiling points?
 - A. $CH_3CH_2CH_3 < CH_3CH_2OH < CH_3CHO$
 - $B. \quad CH_3CHO \, < \, CH_3CH_2CH_3 \, < \, CH_3CH_2OH$
 - $C. \quad CH_3CH_2OH \, < \, CH_3CHO \, < \, CH_3CH_2CH_3$
 - $D. \quad CH_3CH_2CH_3 \, < \, CH_3CHO \, < \, CH_3CH_2OH$

https://xtremepape.rs/

12. How many sigma (σ) and pi (π) bonds are there in the following molecule?

	σ bonds	π bonds
A.	9	2
B.	9	4
C.	11	2
D.	11	4

13. Which species have delocalized π electrons?

- I. CH₃COCH₃
- II. NO_2^{-}
- III. CO₃²⁻
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 14. The specific heat capacity of aluminium is $0.900 \text{ Jg}^{-1} \text{K}^{-1}$. What is the heat energy change, in J, when 10.0 g of aluminium is heated and its temperature increases from 15.0 °C to 35.0 °C?
 - A. +180
 - B. +315
 - C. +1800
 - D. +2637

15. Enthalpy changes of reaction are provided for the following reactions.

$$2C(s) + 2H_2(g) \rightarrow C_2H_4(g) \qquad \Delta H^{\ominus} = +52 \text{ kJ mol}^{-1}$$

$$2C(s) + 3H_2(g) \rightarrow C_2H_6(g) \qquad \Delta H^{\ominus} = -85 \text{ kJ mol}^{-1}$$

What is the enthalpy change, in kJ mol⁻¹, for the reaction between ethene and hydrogen?

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

- A. -137
- B. -33
- C. +33
- D. +137
- 16. Which reaction has an enthalpy change equal to the standard enthalpy change of combustion?
 - A. $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
 - B. $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(l)$
 - C. $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$
 - D. $C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$
- 17. Which reactions/processes have a positive entropy change, ΔS^{\ominus} ?
 - I. $NaCl(s) \rightarrow NaCl(aq)$
 - II. $\operatorname{Na_2CO_3(s)} + 2\operatorname{HCl}(aq) \rightarrow \operatorname{CO_2(g)} + 2\operatorname{NaCl}(aq) + \operatorname{H_2O(l)}$
 - III. $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 18. Which compound has the most positive lattice enthalpy of dissociation?
 - A. NaCl
 - B. NaBr
 - C. MgCl₂
 - D. MgBr₂

19. Which statements explain the increase in the rate of a reaction when the temperature is increased?

- I. More particles have energy greater than the activation energy.
- II. The frequency of collisions increases.
- III. The activation energy decreases.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

20. Experimental data shows that a reaction in which Y is a reactant is first order with respect to Y. Which graph shows this first-order relationship?

- 21. Which statement about a reaction best describes the relationship between the temperature, T, and the rate constant, k?
 - A. As *T* increases, *k* decreases linearly.
 - B. As *T* increases, *k* decreases non-linearly.
 - C. As *T* increases, *k* increases linearly.
 - D. As *T* increases, *k* increases non-linearly.

22. Carbon monoxide and nitrogen dioxide react to form carbon dioxide and nitrogen monoxide according to the following equation.

$$CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$$

The reaction occurs in a series of steps. The equation for the rate-determining step is given below.

$$2NO_2(g) \rightarrow NO_3(g) + NO(g)$$

What is the rate expression for this reaction?

- A. rate = $k[CO(g)][NO_2(g)]$
- B. rate = $k[NO_2(g)]^2$
- C. rate = $k[NO_3(g)][NO(g)]$
- D. rate = $k[CO_2(g)][NO(g)]$
- 23. Hydrogen and iodine react in a closed vessel to form hydrogen iodide.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

At 350 °C $K_c = 60$
At 445 °C $K_c = 47$

Which statement describes and explains the conditions that favour the formation of hydrogen iodide?

- A. Increased temperature as the forward reaction is exothermic, and increased pressure as there are two gaseous reactants and only one gaseous product
- B. Increased temperature as the forward reaction is endothermic, and pressure has no effect as there are equal amounts, in mol, of gaseous reactants and products
- C. Decreased temperature as the forward reaction is exothermic, and decreased pressure as there are two moles of gaseous product but only one mole of each gaseous reactant
- D. Decreased temperature as the forward reaction is exothermic, and pressure has no effect as there are equal amounts, in mol, of gaseous reactants and products

https://xtremepape.rs/

24. Which change would increase the vapour pressure of a liquid in equilibrium with its vapour in a sealed container?

- 12 -

- A. Increasing the temperature while keeping the surface area of the liquid constant
- B. Increasing the surface area of the liquid while maintaining a constant temperature
- C. Adding more liquid at constant temperature
- D. Adding more of the vapour at constant temperature
- 25. Which compound has the highest enthalpy of vaporization?
 - A. CO_2
 - B. NH₃
 - C. H₂S
 - D. H₂O
- **26.** Which of the following is an example of a Lewis acid–base reaction, but not a Brønsted–Lowry acid–base reaction?
 - A. $2 \operatorname{CrO}_4^{2-}(aq) + 2 \operatorname{H}^+(aq) \rightarrow \operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + \operatorname{H}_2 O(l)$
 - B. $\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6^{2+}(\operatorname{aq}) + 4\operatorname{HCl}(\operatorname{aq}) \rightarrow \operatorname{CoCl}_4^{2-}(\operatorname{aq}) + 4\operatorname{H}^+(\operatorname{aq}) + 6\operatorname{H}_2\operatorname{O}(\operatorname{I})$
 - C. $NH_3(aq) + H^+(aq) \rightarrow NH_4^+(aq)$
 - D. $CH_3COO^-(aq) + H_2O(l) \rightarrow CH_3COOH(aq) + OH^-(aq)$
- 27. Which list contains only strong bases?
 - A. ammonia, sodium hydroxide, ethylamine
 - B. potassium hydroxide, ammonia, sodium hydroxide
 - C. lithium hydroxide, potassium hydroxide, barium hydroxide
 - D. ammonia, ethylamine, barium hydroxide

28. The pK_b value of ammonia is 4.75 at 298 K. What is the pK_a value of the ammonium ion?

- A. $\frac{10^{-14}}{4.75}$ B. $\frac{14.00}{4.75}$
- C. 14.00-4.75

D.
$$\frac{10^{-14}}{10^{-4.75}}$$

- **29.** The K_a values of four weak acids W, X, Y and Z are listed below.
 - W $K_{a} = 1.35 \times 10^{-3}$ X $K_{a} = 4.47 \times 10^{-2}$ Y $K_{a} = 9.33 \times 10^{-6}$ Z $K_{a} = 1.47 \times 10^{-5}$

What is the correct order of increasing strength as acids?

- $A. \quad X < W < Z < Y$
- $B. \qquad W < Z < X < Y$
- $C. \qquad Y < X < Z < W$
- $D. \quad Y < Z < W < X$
- **30.** Which is the oxidizing agent in the following reaction?

$$5SO_2(g) + 2IO_3^{-}(aq) + 4H_2O(l) \rightarrow 5SO_4^{2-}(aq) + I_2(aq) + 8H^+(aq)$$

- A. SO₂
- B. IO_3^-
- C. H₂O
- D. SO₄²⁻

31. The overall reaction in the voltaic cell below is:

 $Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$

Which statement is correct for the nickel half-cell?

- A. Nickel is the positive electrode (cathode) and is reduced.
- B. Nickel is the negative electrode (anode) and is reduced.
- C. Nickel is the positive electrode (cathode) and is oxidized.
- D. Nickel is the negative electrode (anode) and is oxidized.
- 32. Which statement is correct for electroplating an object with gold?
 - A. The object must be the negative electrode (cathode).
 - B. The negative electrode (cathode) must be gold.
 - C. The object must be the positive electrode (anode).
 - D. The gold electrode must be pure.

- **33.** What are possible products of the incomplete combustion of propan-2-ol?
 - A. carbon monoxide, hydrogen and carbon
 - B. carbon dioxide, carbon and hydrogen
 - C. carbon, carbon monoxide and water
 - D. carbon dioxide and water only
- **34.** Which equation represents a propagation step in the mechanism for the reaction between ethane, C_2H_6 , and chlorine, Cl_2 , in the presence of sunlight/UV?
 - A. $C_2H_6 + Cl \bullet \rightarrow C_2H_5 \bullet + HCl$
 - B. $C_2H_6 + Cl \bullet \rightarrow C_2H_5Cl + H \bullet$
 - C. $Cl_2 \rightarrow 2Cl \bullet$
 - D. $C_2H_5 \bullet + Cl \bullet \rightarrow C_2H_5Cl$
- **35.** What is the name of CH₃CH₂CH₂CN applying IUPAC rules?
 - A. Butanamine
 - B. Butanamide
 - C. Propanenitrile
 - D. Butanenitrile

36. 1-bromobutane, CH₃CH₂CH₂CH₂CH₂Br, can be converted to 1-aminopentane, CH₃CH₂CH₂CH₂CH₂NH₂, in a two-step process.

 $\begin{array}{cccc} \mathrm{CH_3CH_2CH_2CH_2Br} & & \mathbf{I} & \rightarrow & \mathrm{CH_3CH_2CH_2CH_2CN} \\ \mathrm{CH_3CH_2CH_2CH_2CH_2CN} & & & \mathbf{II} & \rightarrow & \mathrm{CH_3CH_2CH_2CH_2CH_2NH_2} \end{array}$

What are the reagents I and II?

	Ι	II
A.	ammonia	hydrogen with nickel
B.	ammonia	hydrochloric acid
C.	potassium cyanide	ammonia
D.	potassium cyanide	hydrogen with nickel

37. Which halogenoalkane reacts the fastest with hydroxide ions in a nucleophilic substitution reaction?

- A. 1-chlorobutane
- B. 2-chloro-2-methylpropane
- C. 1-iodobutane
- D. 2-iodo-2-methylpropane
- **38.** Ethylamine, CH₃CH₂NH₂, reacts with propanoic acid, CH₃CH₂COOH. Initially a salt is formed which, when heated at 200 °C, can form an organic product. What is the structural formula of the organic product?
 - A. CH₃CH₂NHCOCH₂CH₃
 - B. CH₃CH₂NHCOOCH₂CH₃
 - C. CH₃CH₂COONHCH₂CH₃
 - D. CH₃CH₂COOCH₂CH₃

39. Which structure is a geometric isomer of *cis*-1,2-dichlorocyclobutane?

- 17 -

40. Using an accurate pH meter, the pH of lemonade was found to be 2.30. Some students deduced the pH of the lemonade after titration with a 0.10 mol dm⁻³ sodium hydroxide solution. Their determined values of pH were 2.4, 2.5, 2.4 and 2.4. What is the best description of the precision and accuracy of these measurements?

	Precision	Accuracy		
A.	precise	inaccurate		
B.	not precise	inaccurate		
C.	precise	accurate		
D.	not precise	accurate		